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The paper describes the complex topological structure of invariant surfaces that appears in a quasistationary
regime of the tokamak plasma, and it considers in detail anomalous transport of particles along the invariant
surfaces �isosurfaces� that have topological genus greater than 1. Such dynamics is pseudochaotic; i.e. it has a
zero Lyapunov exponent. Simulations discover such surfaces in confined plasmas under a fairly low ratio of
pressure to the magnetic field energy ���. The isosurfaces correspond to quasicoherent structures called
“streamers,” and the streamers are connected by filaments. We study distribution of time of particle separation,
Poincaré recurrences of trajectories, and first time arrival to the system’s edge. A model of a multibar-in-square
billiard, introduced by Carreras et al. �Chaos 13, 1175 �2003�� is studied with renormalization group method
to obtain a distribution of the first time of particles arrival to the edge as a function of the number of bars,
which appears to be power-like. The characteristic exponent of this distribution is discussed with respect to its
dependence on the number of filaments that connect adjacent streamers.
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I. INTRODUCTION

The goal of this paper is to give a detailed discussion of
results for the so-called topological instability of particle dy-
namics that can appear in fluids and plasmas �1,2�. For any
stationary vector field A�r� the field lines are solutions of the
set of two equations that can be written in the form

dx

Ax
=

dy

Ay
=

dz

Az
�1�

if r= �x ,y ,z�. The field A can be either the magnetic field B
or the velocity field v. Topological properties of A can be
described through the topology of field lines.

It was known fairly long ago �3� that magnetic field lines
can wind a surface S in the coordinate space and that the
surface can be of a fairly complicated topology. The interest
in the existence or nonexistence of magnetic surfaces S arose
in the 1950s with respect to magnetic confinement of plasma
by toroidal magnetic field configurations �4�. The papers of
Tamm and Sakharov of that period were classified and un-
known. Approximately at the same time, there was investi-
gation of the magnetic surfaces by Ulam �5�, who mentioned
the connection of the problem of existence and stability of
magnetic surfaces to the general problem of stability of dy-
namical systems.

In the following years the problem of magnetic surfaces
appeared as an example of the problem of dynamical stabil-
ity �6–8�. An important shift in the understanding of the

problem of existence of magnetic surfaces was a link of
these surfaces to invariant dynamical surfaces, so-called
Kolmogorov-Arnold-Moser surfaces. Indeed, Eqs. �1� can be
written as

dx

dz
= Ax/Az,

dy

dz
= Ay/Az. �2�

These equations can be considered to be a dynamical system
of 1 1/2 degrees of freedom with “time variable” z. More-
over, due to the condition div A=0, which is valid for mag-
netic fields and for incompressible fluids, there exists a nonu-
nique transformation

�x,y,z� → �p,q,t� �3�

and a function H�p ,q , t� such that Eqs. �1� and �2� can be
written in Hamiltonian form �see more, for example, in �9��.
Then a magnetic surface when A=B or a flux surface when
A=v, if it exists, is the invariant surface of the correspond-
ing dynamical system �H ; p ,q , t�.

The analogy of the field-line behavior in coordinate space
and equivalent particle trajectories �Eq. �3�� allows the de-
velopment of a theory of field-line chaos and the correspond-
ing destruction of magnetic surfaces �10,11�. At the same
time, simulations for the velocity field of a specific flow,
known as Arnold-Beltrami-Childress flow, proposed by Ar-
nold �12� and simulated by Hénon �13� show the existence of
chaos of streamlines �see more in Ref. �9��. Later, this phe-
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nomenon was named Lagrangian turbulence �14�, and it
comprised a more general situation because the Lagrangian
particle satisfies the equation

dr

dt
= v�r,t� �4�

for a given velocity field v�r , t� that can be nonstationary. In
the case that either A or v depends on time, the field lines do
not exist by definition, and we will not consider such a situ-
ation. Because a charged particle in a strong magnetic field is
“magnetized” and spirals along the magnetic field lines with
very small Larmour radius, the magnetized charged dynam-
ics is similar to the Lagrangian particle dynamics in zero-
order approximation.

It is a common opinion, at least among physicists, that the
integrability of dynamics is associated with the absence of
chaos. The integrability is considered in the sense of the
Liouville-Arnold theorem as a possibility to transform

H�p1,q1; . . . ;pN,qN� → H�I1, . . . ,IN� �5�

where H is a Hamiltonian of a system with N degrees of
freedom �pj ,qj�, j=1, . . . ,N; Ij are N independent and com-
muting actions; and some other conditions applied �15�. Un-
der these conditions, an integrable trajectory winds along the
invariant surface, which is an N-dimensional torus. It was
mentioned in Refs. �16,17� that the solution of the problem
of integrability of a system depends on the meaning of “in-
tegrability.” It was proved in Ref. �16� that the flux of geo-
desics along an invariant surface of the topological genus,

g�S� � 1, �6�

is not integrable. Some other conditions were mentioned that
showed that existence of invariant surfaces wound by trajec-
tories does not mean the integrability of the system in the
Liouville sense �see review and references in Refs. �17,18��.
In Ref. �19�, the nonintegrability of trajectories in the square-
in-square billiard due to the condition in Eq. �6� was dis-
cussed. The presence of N independent and commuting inte-
grals of motion is not a sufficient condition for integrability
�17–19�. In Ref. �1�, a qualitative argument was given for
why the transformation �Eq. �5�� cannot be time invariant for
the invariant surfaces with g�S��1. As a result, the trajec-
tories are sensitive to small perturbations of initial condi-
tions, and they possess randomness but not chaos. Moreover,
for a simple example in �1�, it was shown that the random-
ness of trajectories, despite the zero Lyapunov exponent, is
sufficient to introduce a kinetic equation with fractional de-
rivatives �20,21� in the description of particle transport in
such systems.

Such random dynamics with a zero Lyapunov exponent is
called “pseudochaos” �20,21�. It can happen in real systems
that the main observable effects are due to the phenomenon
of stickiness and to the sticky part of trajectories rather than
to global dynamics. Such sticky dynamics can also be con-
sidered as pseudochaos because the corresponding Lyapunov
exponent is negligible �22�.

Although the fact of nonintegrability of dynamics with
trajectories that wind filamented surfaces of nontrivial topol-
ogy was known fairly long ago, there was not known, to our
knowledge, any realistic system of this type until the paper
�2�. Simulations of a typical three-dimensional example from
plasma physics have displayed invariant isosurfaces S of
constant velocity potential �stream function� with the topo-
logical genus g�S��1. The paper �2� also provided a pre-
liminary analysis and a billiard-type model to study the phe-
nomenon of pseudochaos.

The present paper is a continuation of �2� with a detailed
simulation of the physical model, detailed analysis of a sim-
plified billiard-type model, and analytical studies of the mod-
els using the renormalization group approach. The structure
of the paper is the following. In Sec. II we introduce some
definitions and describe a connection between dynamics in
billiards and pseudochaotic transport. This is an auxiliary
section. In Sec. III we present results on simulations and
visualization of the filamented invariant surfaces. Let us re-
mark that in �2� we were able to show splitting of the invari-
ant surfaces and emergence of filaments, while here the
structure of the full isosurface and multiple filaments is
shown explicitly. To our knowledge, it is the first explicit
presentation of invariant surfaces with topological genus
greater than 1 for a realistic model of confined plasma. It is
worthwhile to comment that the existence of such isosur-
faces leads to the necessity of a different concept of particle
transport such as fractional kinetics of particles and their
superdiffusion along the surfaces �1,23�.

In Sec. IV we continue presentation of the results of
plasma equation simulation and visualize various samples of
passive particle trajectories along the filamented isosurfaces.
These trajectories follow filaments and very closely reveal
the trajectories in the multibar billiard system proposed as a
model in �2�. The analogy is fairly strong up to filamenta-
tions of higher order that are not considered in this paper.
The results of this section help to shape the multibar billiard
model and to provide its analytical investigation in the fol-
lowing two sections. In Sec. V we construct the renormaliza-
tion group equation for the Poincaré recurrences and with the
solution of this equation we obtain the value of the transport
exponent. A similar equation is obtained in Sec. VI where the
exponent for the distribution of recurrences ��M� is a func-
tion of the number of bars M. We analytically obtain a power
dependence of ��M� known before �2� from the simulation.
We summarize the results in Sec. VII as a confirmation of the
model proposed in �2� visualized numerically in this paper.

The notion of topological instability has two aspects: the
appearance of filamented invariant isosurfaces with topologi-
cal genus more than 1, and superdiffusive transport along
these surfaces. This paper gives only numerical for the first
aspect, while the second is studied in both numerical and
analytical ways.

II. POLYGONAL BILLIARDS AND THEIR INVARIANT
SURFACES IN PHASE SPACE

It is well known that for some special cases the behavior
of dynamical systems can be modeled by the dynamics of a
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point particle in billiards with elastic collisions. This analogy
is also important for our case. Consider a polygonal billiard,
i.e., a billiard with angles at its M0 vertices equal to �mi /ni,
i=1, . . . ,M0, where �mi ,ni� are integers. Some rigorous re-
sults connecting the dynamics of polygonal billiards and
flows along the corresponding surfaces in phase space can be
found in Refs. �24,25�. Particularly, the topological genus
g�S� of the equivalent surface S is �24�

g�S� = 1 +
1

2
n�

i=1

M0 mi − 1

ni
�7�

where n is the least common multiple of ni. Equation �7�
gives g=2,5 ,4 for the cases �b�,�c�,�d� in Fig. 1, where M is
the number of bars in the square billiard table similar to Fig.
1�d�. Then from Eq. �7�

g�S� = 1 + M . �8�

A result similar to Eq. �7� was presented in Ref. �19� where
the square-in-square billiard �Fig. 1�c�� was considered.

There is a topological equivalence between the phase
space structure for trajectories in billiards �a�–�d� and the
surfaces �a1�– �d1� of Fig. 1, but the geometric equivalence
exists only for the rectangular billiard �a� and the torus �a1�.
Therefore, the nonintegrability theorem of Kozlov �16,17�,
proven for the flow of geodesics, can be generalized for the
billiard-type systems. The following is a simple qualitative
consideration of nonintegrability for the cases shown in Fig.
1�b�–1�d�. We consider a part of a trajectory that winds
across a common part of the two “semitori” in Fig. 1�b�.
Approaching the point of bifurcation of the surface, the tra-
jectory can wind along any of the split parts of the surface. In
particular, this means that the transform �Eq. �5�� to the ac-
tion variables �I1 , . . . , IN� is not defined uniquely due to the
bifurcation of the invariant surface �1�. Each filament of the
surface has its own action �other comments can also be found
in Ref. �19��.

Let � be the angle of a trajectory with the horizontal axis
in billiards �a� through �d� of Fig. 1. The trajectory is called
rational if tan �=m /n is rational, and is called irrational if
tan � is an irrational number. All rational trajectories are pe-
riodic and all irrational ones are ergodic and have Lyapunov
exponent zero �24–26�. Nevertheless, the irrational trajecto-
ries have a weak mixing �27�; i.e., for almost all square in-

tegrable functions G1�x� and G2�x� �the x phase space coor-
dinate of a particle in the billiard�, the following limit is
valid:

lim
t→�

1

t
�

0

t

dt��G1�xt�G2�x0�� − �G1�x0���G2�x0���2 = 0, �9�

where �¯� is averaging in phase space with natural measure
�28�. Strong mixing, or simply mixing, means that

lim
t→�

��G1�xt�G2�x0�� − �G1�x0���G2�x0��� = 0. �10�

Weak mixing can be accompanied by arbitrarily large and
long-lasting fluctuations �i.e., deviations of the correlation
function�:

R�t� = �x�t�x�0�� − �x�2. �11�

The deviation from zero can be large and for a long time
interval, but the time average of R2�t� is zero. Weak mixing
dynamics is bursty and strongly intermittent �1,23�.

III. DESCRIPTION OF A PHYSICAL MODEL

Let us consider a fluid model for a three-dimensional �3D�
plasma in the toroidal geometry with a magnetic configura-
tion characteristic of a tokamak system. In this model, the
pressure gradient is the main plasma instability drive �29,30�.
In plasmas, the pressure-gradient-driven instability is analo-
gous to the Raleigh-Taylor instability in fluids when a layer
of heavy fluid is over a layer of light fluid.

We will consider a description of the plasma dynamics
based on a single-fluid approximation. In this framework, we
consider the evolution of the plasma flows and pressure
through a momentum balance equation and equation of state.
These equations are coupled to the Maxwell equations. To
simplify the system of equations, we make a further approxi-
mation. We assume that the aspect ratio of the torus, A, is
large. Here A=R /a where R is the major radius and a the
minor radius of the torus. In the large A limit, one can ne-
glect the fastest time scale of the system, compressional
Alfvén waves, and the resulting set of equations is usually
referred to as the reduced magnetohydrodynamic �MHD�
equations �31�. We use this model to calculate the nonlinear
evolution of the plasma. In this evolution, after a fast growth
period, the plasma reaches a steady state. Depending on the
strength of the pressure drive, the steady state is character-
ized either by the presence of turbulent flows or by a quasis-
tationary flow. This transition between a laminar flow and a
turbulent flow was studied in Refs. �2,32�. Here, we continue
this investigation, and we present more detailed results char-
acterizing the transport properties of the plasma under those
conditions.

The underlying plasma instability for the different states
is the so-called resistive pressure-gradient-driven instability
that is present at the plasma edge �33�, where the plasma has
low temperature with moderate density levels, �i.e., it has
high resistivity with finite pressure compared to the pressure
of the magnetic field�.

In writing these equations, we use the toroidal coordinate
system �see Fig. 2�: radius �, poloidal angle �, and toroidal

FIG. 1. Four examples of billiards and their corresponding in-
variant isosurfaces.
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angle 	. We use the same notation as in Ref. �2�. Because of
the assumption of a large aspect ratio, the plasma flow ve-
locity is essentially perpendicular to the magnetic field and
can be written as

V� = − � 
 � B , �12�

where B is the magnetic field and 
 is the velocity stream
function. The toroidal component of the vorticity U is given
by

U =
1

B
� · � � V�. �13�

The parallel derivative operator �	 in toroidal coordinates is

B · � =
B	

R

 �

�	
−

1

q

�

��
� , �14�

where the so-called safety factor q is the poloidal rotational
“frequency.” Equations �12� and �13� allow us to express U
in terms of 
.

The dimensionless forms of the reduced MHD equations
for the plasma, written in terms of U and pressure p, are �2�

dU

dt
= − S2B · � 
 1

�B	
2B · � 
�

+ S2�0

2

b�b · � b�
B

· � p + ���
2 U ,

dp

dt
= D	

R2

F
B · � 
R2

F
B · � p� + D���

2 P , �15�

where � is the resistivity, b=B /B, F=RB	, �0
= p0 / �B	

2 /2�0� is the ratio of plasma pressure to the magnetic
pressure, � is the collisional viscosity, D	 and D� are diffu-
sion constants with respect to the direction of B, S is the
Lundquist number, =1/A is the inverse aspect ratio of the
torus, and the convective derivative is

d

dt
=

�

�t
+ V� · � . �16�

The numerical scheme, described in Ref. �2�, is based on
Fourier expansion in the poloidal � and toroidal 	 angles:


 = �
m,n


m,n��,t�sin�m� + n	� ,

p = �
m,n

pm,n��,t�cos�m� + n	� . �17�

We use finite differences for the discretization of the radial
variable. The radial grid is nonuniform with 305 points; this
gives a radial resolution of r /a=0.002 in the region 0.5
�r /a�1, where the pressure gradient drive is nonzero. The
number of Fourier components used in the numerical calcu-
lations is 1700. In the numerical scheme, all linear terms in
the equations are treated implicitly. The nonlinear terms are
explicit. The time stepping is done in two substeps so that the
scheme is second-order accurate.

To understand transport in this system, it is necessary to
understand the structure of the flows. We use particle tracers
to study them. The passive particle �tracer� dynamics is de-
scribed by the equation

dr

dt
= V��r,t� . �18�

Because of the form of the perpendicular velocity in terms
of the stream function �Eq. �12��, the stream function is an
effective Hamiltonian for the tracers. Therefore, when we
refer to isosurfaces, we mean surfaces with a constant stream
function 
.

The structure of the isosurfaces is very complicated. Fur-
thermore, because they wrap on a torus, their direct visual-
ization is not necessarily helpful. To really visualize the
three-dimensional structures, we have to unwrap them from
the torus. To do so, we plot a 
 isosurface by first consider-
ing a single streamer in the 	=0 plane and following it along
the torus. In the 	=0 plane, we draw a box around the
streamer, and we extract the data from within the box. We do
the same thing in each of the 	=const planes, but we change
the size and shape of the box to fit in it the portion of the
constant-
 surface that is coming from the streamer that we
selected in the 	=0 plane. The size of the box varies as we
move around the torus. Therefore, the figure obtained by this
method only provides information on the topology of the
structure.

As discussed in Ref. �2�, the solution of Eq. �15� depends
critically on the value of the parameter �0. For a fairly small
value ��0=0.001�, there is a time relaxation of all Fourier
components to a quasistationary regime with only the n
=25 mode dominating the spectrum. Because of the toroidal
geometry, each toroidal mode has many poloidal components
with different m values. At higher �0, several toroidal modes
may compete for dominance, and the evolution shows a tran-
sition to a turbulent state.

Even in the case of a single dominant toroidal mode, the
structure associated with it is quite complicated. In the outer
region of the torus, the different poloidal components tend to
reinforce themselves. they create eddy structures that are
elongated in the radial direction �streamers� �34�. However,
in the inner region of the torus, cancellations among the po-
loidal components result in multiple disjoint eddies. In 3D,
the quasicoherent structures associated with these modes are

FIG. 2. Toroidal coordinates �� ,� ,	�.
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very complicated. Examples of such structures are shown in
Figs. 3 and 4. All streamers are radially elongated and inter-
connected through filaments. A decomposition of each eddy
�streamer� on a number of filaments is seen in Fig. 4 on the
left half of the plate. More detailed views of selected isosur-
faces are in Fig. 5 Part �a� shows one rotation around the
torus; parts �b� through �d� are related to tracking twice
around the torus. Each filament does not return to the same
streamer. Instead, it does a twist and returns to another
streamer. This behavior of filaments is not simple to visual-
ize; even an oversimplified version for three filaments,
shown in Fig. 6 for two different cases, is fairly complicated.
Each thin channel or line in Fig. 6 corresponds to a filament
that does not intersect others, and each thick line contour
corresponds to a streamer. There are two different orders of
filament-streamer connections in Fig. 6: �a� a simple connec-
tion with a twist and �b� the connection that corresponds to
the so-called interval-exchange transformation that was dis-
cussed in Ref. �1� for the bar-in-square billiard in Fig. 1�b�.
In a realistic model �Fig. 5�, several generations of filaments
can be seen. In this paper, the calculations of the plasma
turbulence have been carried out for a radial region that is
twice the radial extension used in Ref. �2�. At the same time
the number of Fourier components has been increased from
815 to 1700. This allows the formation of twice as many
filaments for the invariant surfaces. Under these conditions,
we carried out more detailed studies of the dynamics of par-
ticle tracers as will be discussed below.

To get some statistical properties of the particle tracers,
we have implemented several diagnostics. One diagnostic is
used to determine the trapping time distribution. It is based
on the  separation of trajectories �2,35,36�. When we start a
particle tracer, we also initiate another one separated from
the first by a radial separation d�0�. We follow both trajecto-
ries until they separate by a radial distance d��t�. The time
�t elapsed until they separate is the trapping time. The cal-
culation is repeated many times to obtain a probability dis-
tribution of the trapping times. For the results presented here,
we use d�0�=0.001 and =0.003.

We have also measured the distribution of Poincaré recur-
rences. To do so, we start a cluster of tracer particles in a
localized region in the plane 	=0. For each particle, we cal-
culate the time required for it to come back to the region
where it originated. From the time measurements, we calcu-
late the probability distribution. For the results presented
here, the region in the 	=0 plane is defined by 0.65��
�0.75 and −0.12���0.12.

The following sections consider a model for particle dy-
namics along the filamented surfaces, theoretical analysis of
the model, and comparison of the theory with simulation
data.

IV. PARTICLE DYNAMICS AND TRANSPORT

The filaments in Fig. 5 have the shape of flat ribbons,
which is a reason to consider a two-dimensional model of
particle dynamics rather than a three-dimensional one.

In Ref. �2� a multibar-in-square �MBS� billiard model was
proposed �see Fig. 1�d��, where the number of bars M is
related in a simple way to the number of filaments. While
this is an oversimplified model for topological construction
of the isosurfaces, it can be considered a fairly good approxi-
mation because it follows from the simulation. The corre-
sponding results are presented in Figs. 7 and 8. In Fig. 7, the
trajectories of different particles colored in different ways are
very close to the types of trajectories in the MBS model.
Moreover, as shown in Fig. 8, where few trajectories have
close initial conditions, separation of the trajectories is due to
the specific topology of the filamented surface, and it is simi-
lar to the separation in the MBS billiard with a zero
Lyapunov exponent. In fact, Figs. 7 and 8 show that there is

FIG. 3. �Color� Quasicoherent structures: Isosurfaces of inter-
connected streamers.

FIG. 4. �Color� Contours of
sections of isosurfaces at two dif-
ferent poloidal planes. Colors
show the magnitude of the stream
function.
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some difference in the widths and lengths of filaments, and
there can be several sets of filaments. Nevertheless, as a first
approximation for the theory presented in the next sections,
we neglect this difference and investigate a simplified model
of MBS billiard with equidistant location of bars.

We need to make a further comment on the MBS model.
The considered billiard-type model may be topologically
equivalent to the model of particle dynamics along the isos-
urfaces presented in Fig. 5, but there is a metrical difference
between topologically equivalent surfaces and real isosur-
faces in the phase space of particles. The particle dynamics
in Figs. 1�a�–1�d� has a zero Lyapunov exponent, and the
dynamics in the billiards of Figs. 1�b� and 1�b�–1�d� is

pseudochaotic �1,20�. The dynamics of particles along real
isosurfaces in Fig. 5 can be characterized by a fairly small
Lyapunov exponent ���. This means that the pseudochaotic
MBS billiard model is only a good approximation for a fairly
long time �t��1/��.

Among the different ways to test the model, there is test-
ing of the so-called  separation of trajectories for small 
�2,35,36�. Let d�t� be the distance between two trajectories
with different initial conditions, and let d�0��R with R as a
characteristic size of the system. We consider the condition

FIG. 5. �Color� Different
views of an isosurface and its fila-
mentation: �a� going once around
the torus; �b�–�d� going twice
around the torus.

FIG. 6. A symbolic presentation of an isosurface with three
streamers connected through the filaments. �a� Filaments connect
the streamers with a twist; �b� each filament is a thin line with an
arrow, and their connection with streamers is twisted by one con-
nection point. This connection corresponds to the interval-exchange
transformation.

FIG. 7. �Color online� Tracer trajectories started at the same
poloidal and toroidal angles but with different radii.
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d�0� � d��t� =  � R �19�

where �t is a time of  separation. For different initial pairs
of trajectories, there will be different values for �t, and one
can consider the distribution function P��t�. This function
is different from the probability distribution function �PDF�
of Lyapunov exponents since for the definition of � one
needs the condition �R.

In the case of pseudochaos, �=0 and dispersion of trajec-
tories is polynomial, i.e.,

ln d��t� = ln  � ln �t + const, �20�

and we expect a power law,

P��t� = const/��t��, �21�

where � is some constant exponent for large �t. We call �t
the separation time and call P��t� the PDF of separation
time, or simply the distribution of separations.

To check the distribution of separations, we consider the
tracer particle dynamics

dr

dt
= V��r,t� + V0b , �22�

where V0 is the velocity along the magnetic field �compare to
Eqs. �4� and �18��. Because of the symmetry of the problem,
the constant velocity V0 can be arbitrary. In practice, it
should be V0�V�, otherwise many particles will never be
influenced by the complicated structure of the velocity field
V��r , t�.

The results of the simulation are presented in Fig. 9. Par-
ticle trajectories stay very close while they travel in tubes of
filaments, and they mix �weakly� in the streamers. The nar-
row tubes have an angular length poloidally of about �. This
implies a length toroidally of q�R where q is the so-called
safety factor, or rotational number. From this, the maximum
separation time is

max �t � q�RV0. �23�

As V0 increases, the max �t decreases and P��t� exponen-
tially decays due to randomly distributed initial conditions.

When V0 is small or zero, the estimate �23� does not work
and the random initial conditions play a different role be-
cause the mixing is defined by a random walk from one tube
to another through the “free” space in streamers. Such a dif-
ference of trajectories is clearly seen from Fig. 10, where,
assuming pseudochaotic particle behavior, one can expect a
power law �Eq. �21��. That is evident from Fig. 9 for V0
=20 with

� = 2.18 ± 0.2. �24�

The calculations for this case were done with an initial sepa-
ration d�0�=0.001 and for =0.003. The statistics vary be-
tween 7 and 50�106 events, providing a very reliable result.

Returning to the model of a tracer that wanders along the
streamers with filaments, we can consider the process of
transport in a radial direction as the process of a random
walk and the first arrival to the value r1. It is known that,
in the case of a power law distribution and large t, the as-

FIG. 8. �Color online� Dispersion of tracers along different
filaments.

FIG. 9. �Color online� Distribution of separation time for differ-
ent values of V0 based on 50 000 initial pairs for each case, and
d�0�=0.001, =0.003.

FIG. 10. �Color online� Samples of trajectories with different
V0.
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ymptotics of the PDF for the first arrival time is the same as
the asymptotics for the PDF P�t� of recurrences to a small
domain in phase space at time t �23�. In turn, the asymptotics
of P�t� coincides with the PDF of separation P��t� �37�. On
this basis one can expect that

� = �rec, �25�

where �rec is the exponent of P�t�. Although it is difficult to
get good statistics for the PDF of recurrence time, the data in
Fig. 11 are in fairly good agreement with Eq. �25�.

V. DISTRIBUTION OF POINCARÉ RECURRENCES

For a tracer trajectory that starts in a small domain A of
the phase volume �A, the tracer dynamics is bounded. Due to
that, the trajectory will repeatedly return to A infinitely many
times. A time between two successive escapes from A is
called a recurrence cycle. The probability density P�t ;A� of
return to A with the duration t can be normalized by ��A� if
the phase space is uniform. Then the function

P�t� =
1

��A�
P�t;A� �26�

will be called the distribution of Poincaré recurrences, and it
satisfies the normalization condition

�
0

�

P�t�dt = 1. �27�

It was shown in Ref. �1� that, for an ensemble of irrational
trajectories of the bar-in-square billiard �Fig. 1�b��, the cycles
are discrete and their values tn satisfy the scaling condition

tn = �T
ngT�n�, n → � , �28�

where n is a natural number, gT�n� is a slowly varying func-
tion of n, and for the scaling parameter �T,

ln �T = �2/12 ln 2 = 1.186 . . . . �29�

Using the diophantic approximation method we also
showed that

P�t� = const � t−�, t → � . �30�

The recurrence exponent � was obtained by simulation as

� � 2.75. �31�

In this section we show how the � value can be obtained by
using the renormalization group approach. The importance of
having the function P�t� is that Poincaré recurrence distribu-
tion can typically be linked to the transport properties of the
considered system �23�. For example, a bar-in-square billiard
that continues periodically in both the x and y directions �see
Fig. 2 in �1�� has an infinite lattice of similar scatterers �bars
in this case� and is known as a “Lorentz gas.” The diffusion
in this model is only along the y axis since there is conser-
vation of the momentum along the x axis. It was speculated
and confirmed numerically �1� that

��y�� � t�/2, t → � , �32�

where the transport exponent � is given by

� = � − 1 � 1.7 – 1.9; �33�

i.e., by having the value of � for Eq. �30� one can resolve the
law of transport. The value ��2.75 was obtained in Ref. �1�,
while a more comprehensive simulation gives ��2.8±0.1.
In fact, the result for � slightly depends on the geometry of
the billiard and on the selection of the ensemble of trajecto-
ries.

Let us introduce the probability Pint�t� to have the recur-
rence cycle time within the interval �0, t�. Then,

Pint�t� = �
0

t

P�t�dt . �34�

For the transition of tn to tn+1 �see Eq. �28��, we assume that
Pint�tn� and Pint�tn+1� should be the same functions. This
leads us to the renormalization group equation due to the
specific property �28�:

Pint�tn+1� = Jn,n+1Pint�tn� + �P , �35�

where �P plays the role of a boundary condition and does
not follow the renormalization transform, and Jn,n+1 is a cor-
responding Jacobian. An important step is to consider a dis-
crete set of time instants �t1 , t2 , . . . , tn , . . . � instead of the con-
tinuous time t.

Let � be the angle of a trajectory with the x axis in the
bar-in-square billiard. Then we can write

tan � = a0 + �a1,a2, . . . � , �36�

where the continued fraction has been introduced:

� � 1/�a1 + 1/�a2 + . . . �� � �a1,a2, . . . � ,

�n � �a1, . . . ,an� = pn/qn. �37�

It is known �38� that the so-called Khinchin constant is given
by �41�

FIG. 11. �Color online� Distribution of Poincaré recurrences to
the domain 0.65�r�0.75; −0.12���0.12, 	=0. The statistics
correspond to 38 878 events.
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lim
n→�

�a1 . . . an�1/n = 2.685 . . . � �a, �38�

i.e., one can write

�
k=1

n

ak = �a
nga�n� � �an� , �39�

where ga�n� is a slow function of n.
Any statistical ensemble for the bar-in-square billiard or

for the corresponding Lorentz gas consists of a large number
of trajectories with different irrational tan �. That means that
the Jacobian in Eq. �35� can be presented in the form

Jn,n+1 =
dtn

dtn+1

d�an�
d�an+1�

. �40�

The slowness of functions gT�n� in Eq. �28� and ga�n� in
Eq. �39� means that

lim
n→�

1

n
ln ga�n� = lim

n→�

1

n
ln gT�n� = 0. �41�

Using Eqs. �28�, �39�, and �41� we obtain

Jn,n+1 = 1/��T�a� , �42�

and the renormalization transform equation �Eq. �28�� occurs
as

Pint�tn+1� =
1

�T�a
Pint�tn+1/�T� + �P . �43�

Equation �43� is a particular case of the general equation

f�t� = cf�t/b� + g�t� . �44�

The singular solution for Eq. �44� can be written as shown in
Refs. �39,40�:

f�t� = t−��K0 + �
n=−�

n�0

�

Kn exp�2�in ln t/ln b�� , �45�

where

� = −
ln c

ln b
�46�

and the sum provides the so-called log-periodic modulation
of the main term with K0. The leading term of this result,
f�t��K0t−�, can be obtained simply by its substitution in Eq.
�44�. It immediately gives Eq. �46�. The constants Kn �n
=0,1 , . . . ,�� can be obtained by using the Mellin transform
�40�.

Comparing Eqs. �44� and �43�, the expression �46� yields

� = 1 + ln �a/ln �T = 1.83, �47�

where the values of �T and �a, obtained from Eq. �29�, are
used. From the definitions �Eqs. �30� and �34�� we have

� = � − 1 = � , �48�

which gives �=2.83, in good agreement with Eq. �31�.
Let us comment that in �1,2� the relation �48� was consid-

ered on the basis of some qualitative speculations while here
it is obtained from the renormalization group equation.

VI. MULTIBAR-IN-SQUARE BILLIARD MODEL

A multiplicity of bars is introduced as a model of an iso-
surface with filaments. Let M �1 be the number of bars and
the Poincaré recurrence distribution be

P�t;M� = const/t��M�; �49�

i.e., the recurrence exponent �M depends on M. In Fig. 12 we
show this distribution, which can be presented in the form

��M� = const/M� + ��, �50�

where ��=��M→��. The result �50� is purely empirical. A
similar result was obtained in �2�, while the one in Fig. 12 is
obtained with better statistics. Particularly, a more detailed
simulation shows that ��0.6–0.8 and

�� � 2.15 �51�

�see Fig. 12�. It was mentioned in Sec. III �see also �2�� that
in the quasistationary regime only the n=25 mode dominates
the spectrum. This number corresponds to the number of
streamers in Fig. 4 and, for the billliard model, one can put
M =24. For M =24, we have ��24��2.3, which is consistent
with � in Eq. �24� and with Eq. �25�.

At the moment we cannot provide a complete theory of
this result �Eq. �50��, but we can make some interpretation of
it, based on the renormalization group approach.

The multibar billiard in Fig. 1�d� can be considered as a
set of M similar one-bar billiards elongated along y with a
distance 1 between bars. Let PA�t ;M�dt be a probability to
have a recurrence cycle t to a small domain A with phase
volume ��A� and M is the number of bars. Let us also take A

FIG. 12. Dependence of ��M� vs M obtained from 103 trajec-
tories. Duration 108 each.
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at the bar of the first billiard cell and consider M �1. It is an
important property of PA�t ;M� that the limit exists

lim
M→�

PA�t;M� = PA�t;�� �52�

as follows from Fig. 12 and from Eq. �50�.
We also assume that there exists a self-similarity of tra-

jectories in phase space of any one-bar billiard cell. This
property permits the following presentation:

PA�t;M� � C�PA�t;1���1��M0, �53�

where C is the normalization constant and ��1� is the phase
volume of the one-bar cell; i.e.,

��1� = a��cos �� , �54�

where a is the bar length and ��cos �� is the interval of the
velocities cos � for the ensemble of particles. The effective
number M0�M needs more discussion. Because of the ex-
istence of a limit �Eq. �52�� it is evident that the full number
M of cells never works because the x and y coordinates for a
one-bar billiard are within the interval x� �0,1�, y� �0,1�,
while for the M-bar billiard x� �0,1�, y�0,M�, and for any
finite t and M→� the distant cells are seldom visited by
trajectories that make input into PA�t ;M�. More accurately,
considering the asymptotics t→�, M→�, we first perform
the limit M→� and, second, the limit t→�. For fairly large
M we have M0�M and we can estimate M0 as

M0 = const � y0�t;M� , �55�

where y0�t� is a characteristic coordinate along y for trajec-
tories that make input into PA�t ;M�, and constant is related
to the fixed ensemble width with respect to �.

From Eq. �53� we obtain

ln PA�t;M� = M0 ln PA�t;1� + C1. �56�

C1 is an additional constant, or after substitution of Eqs. �49�
and �55� into Eq. �56�,

��M� = const � y0�t;M���1� + C1/ln t . �57�

Let us consider an integer �:

1 � � � M0 � M . �58�

Similarly to Eq. �57�, we have

��M/�� = const � y0�t;M/����1� + C2/ln t , �59�

with a constant C2, or

��M� =
y0�t;M�

y0�t;M/��
��M/�� +

C2y0�t;M�
y0�t;M/��ln t

+
C1

ln t
+ ��.

�60�

Equation �60� is similar to the renormalization group
equation, where we need to estimate the transform coeffi-
cient:

JM,�
−1 = y0�t;M/��/y0�t;M� . �61�

This can be done under the assumption of uniformity of scal-
ing along y, and using the asymptotics of ��y�t��� from Eq.
�32� instead of y0�t�:

JM,� = t�/2/�t���/2 = �−�/2. �62�

Substitution of Eq. �62� into Eq. �60� gives the equation

��M� = �−�/2��M/�� +
C1 − C2�−�/2

ln t
+ ��. �63�

Equation �63� is of the form of Eq. �44� for large t, and the
solution should be of the form of Eq. �45�; i.e.,

��M� � const/M�� + ��, �64�

where we left only the first term, and with

�� = −
ln �−�/2

ln �
= �/2 = � , �65�

and � is introduced in Eq. �50�. Using the value of � from
Eq. �33� we have �=0.85–0.95, which is slightly high com-
pared to the values ��0.6–0.8 from Fig. 12. The small dif-
ference can be explained by the approximations �Eqs.
�59�–�62�� and by the level of accuracy for � from simula-
tions.

Finally for this section we should comment that for fairly
large M �40, the MBS billiard has the value of ���2.2,
which is very close to the limit value �c=2 when the mean
recurrence time

�rec = �t�rec = �
0

�

dt tP�t;M� �66�

becomes infinite. This means that the MBS billiard almost
never returns; i.e., a strongly nonequilibrium distribution of
particles should be typical for such systems �see more in Ref.
�21��.

VII. CONCLUSION

This paper pursues the following points.
�a� Simulations of resistive pressure-gradient-driven tur-

bulence in plasmas show the existence of very complicated
topology of invariant surfaces for the velocity potential. This
topology has, in addition to streamers, elements called fila-
ments. The topology of isosurfaces has genus g�S� more than
1, providing a different view on the transport of particles
along the isosurfaces. The value of g�S� is closely related to
the dominating ballooning mode.

�b� Particle dynamics along the isosurfaces is not inte-
grable and can be modeled by the dynamics in multibar-in-
square billiard. These dynamics are pseudochaotic; i.e., they
are random but with a zero Lyapunov exponent.

�c� Despite a fairly rough approximate model of the de-
scription of particle dynamics along the isosurfaces, simula-
tions show fairly good agreement between numerical results
and the theory based on the renormalization group approach.
The latter permits us to calculate all exponents related to the
anomalous transport of particles.

�d� Pseudochaotic transport is relevant to systems with a
zero or close-to-zero Lyapunov exponent. Anomalous prop-
erties of transport in such systems appear to represent a para-
digm important to different applications in a number of dis-
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ciplines, such as plasmas, condensed matter, and nonlinear
optics.
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